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Hubble's Law and Supermassive Black Holes
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The rate of a object’s recession from the Earth
is proportional to their distance from the Earth: ‘ X
V= H 0 D Distance (Mpc)
« A\Very accurate value for H, is necessary
for constraining cosmological models
* In order to measure H, we need accurate
values for a object’s distance and velocity.

A black hole that is on the order of 10° to 10°

M- It is thought that a supermassive black
hole exists in most, and possibly every galaxy’s ooy gk et b
center. L5mon ¢
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Mega-masers are A-mase-ing!

Using Megamasers Disks to Find Distances and BHMs
NGC 4258: the prototype for this method. A

. 1500 1300 500
1. Measure v, from Doppler shifts Heliocentric velocity (km s°)

2. Multiple observations to measure a, (v4/r) d’
3. dv/dB = D(v/r) Keplerian thin disk model Solve for D! corinn
Centroids ™\

4. Solve for D to constrain cosmological models (H,)! or % ] masers
find black hole masses. \

Flux (Jy)

One Such Calculation is not Enough = ———

3% accuracy for H, requires: {SH——
100 galaxies like NGC 4258 i ok
Or 10 more distant ( > 50 Mpc), more luminous systems.

The detection rate of maser systems remains low
» Surveys for maser systems have had a <3% success rate for Galaxies with any
maser emission, even fewer maser disks.
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rotation




OUR PROJECT: PROPERTIES OF GALAXIES WITH H,O0 MASERS

What produces megamaser emission in some galaxies and not in others?

First we need data, and for the first time ever there is plenty of it!

Megamaser Cosmology Project (MCP):
 Uses the GBT, VLBA, VLA, and others to find H20 megamasers
» ~3000 galaxies surveyed, 146 detected in H20 maser emission
Sloan Digital Sky Survey (SDSS):
 Asurvey of a quarter of the sky
* Final dataset includes 230 million celestial objects, including
spectra of about 10° galaxies

Our data:
 Across match between these two data sets revealed ~1200
galaxies including 44 maser detections.
» We employ redshifts, line fluxes, luminosities, stellar population
properties, proxies for black hole masses, etc.




Principle Component Analysis (PCA):

What is the data telling us?

PCA determines which dynamics are
important, which are redundant and which are
noise by finding the Principle Components, the
directions of the most variance in the data.

Let X be the original data
set, where each column is a
single object of our data set 1) Subtract the mean
2) Find C, the covariance matrix

* covariance is a measure of how much two random

variables change together
« variance is the variation of the values of a variable
* \We may express the these as a dot products
« 0%, = (1/n) ab’
« the covariance matrix C, = (1/n)XXT.




- the diagonal terms (C,) show the variance of the i data type.
* The off-diagonal terms (C;) are the covariance between the data types.
In English:
 In the diagonal terms, large values correspond to interesting structure.
* In the off-diagonal terms large magnitudes correspond to high redundancy.

So the goal becomes: Find some orthonormal matrix P as in Y = PX such that
C is a diagonal matrix (i.e. find a matrix that will change the basis to one where
the covalence matrix is diagonalied)

C is a square symmetric m x m matrix and can therefore be diagonalied by a matrix of
its eigenvectors.




A toy example:

Pretend we are studying the motion of the physicist’s ideal spring. Of course
the underlying dynamics can be expressed as a function of a single variable x. (It
moves in a line, it is one dimensional).

But we don’t know:
« which or how many, axes and dimensions camera & ‘
are important to measure. \We measure the
ball's position in a three-dimensional space. ' —"
* \We do not even know what are the real “x”,
‘y "and “z "axes, so we choose some camera A
arbitrary angles with respect to the system.
How do we get from this data set to a simple

equation of x

PCA analysis would tell us that the process is purely linear and (in
terms of where the cameras are currently located) what axis that line is.



A Mere Sample of our Glorious Data
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The Results of the PCA analysis
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THE HOMEWORK

«  We have the eigenvectors now we need to find what they mean physically.

* How do correlations suggested by the PCA results differ across the samples? What
correlations are important and what can we learn from them?

*  Run the PCA for different subsets of measurements
*  We will combine the two samples but include a “strength of H20 emission” (L)

* Add measurements in other wavelengths e.g. WISE (Wide Field Infrared Survey Explorer)
data (from Jimmy Corcoran)

 Crucial for mapping the link between dust properties and the masing activity.




