

Image Credit: NASA/JPL-Caltech

# Modeling Decade-scale Broad Emission Variability in Active Galactic Nuclei

Jacob Green Anca Constantin

## AGN & Variability

- Active Galactic Nuclei (AGN)
  - Supermassive (10<sup>7</sup>-10<sup>9</sup>M<sub>sun</sub>) black hole (SMBH)
  - Accretion disk
  - Broad line region (BLR)
    - Gas moving at 1000s of km/s
  - Narrow line region (NLR)
    - Gas moving at 100s of km/s
  - Different viewing angle determines observation of different components
  - e.g. edge-on view BLR is obscured by dust in the torus
- BLR not always detected
  - Naked AGN?
  - Obscured by torus
  - Buried in host galaxy light
  - Variability



### Why study variability?

- Constrain models of accretion (continuous vs. episodes)
- Puts limits on BLR detectability → AGN detection and census
- Constrain models of geometry and properties of the broad line emitting region

## Variability in BLR

- Short-term variability (time-scales < 1 year)</li>
  - Well studied soon after the discovery of quasars (1963)
  - Relatively easy to gather data
  - Determine size of BLR through reverberation mapping
  - o e.g.: AGN Watch (OSU)



- Long-term variability (time-scales > 10 years)
  - Very little to no research
  - Much more difficult to gather data
    - Requires more time and money
  - Recent tantalizing evidence Constantin et al. (2015)
  - Potentially useful for converting the BLR detection rate in one time survey of AGN → true census of actively accreting SMBHs in the universe

## Evidence for Decade-scale Variability in BLR?

- Galaxies observed 12-17 years apart showed different strengths in broad H  $\alpha$ 
  - Later observations had higher contrast between emission features and continuum
- Later observations consistently show weaker broad H  $\alpha$
- Higher contrast in later observation → easier to detect weaker emission
- Later observed broad flux not only tends to be different, but also lower
  - Earlier observations had less contrast and could only detect broad emission near the maximum in variability cycle
- Fraction of H  $\alpha$  flux in the broad component tends to be higher at later observation



Constantin et al. 2015, ApJ, 814, 149

## Model Design: Simulating a Survey of 10<sup>5</sup> AGNs

- C++ code
- Optical spectra λ 6500Å λ 6650Å
  Covers the H α and [NII] doublet region
- Monte Carlo methods to build parameter space defining each spectrum
- Distribution of each parameter is modeled by a uniform distribution
- Ranges of parameters match measurements from AGN surveys

## A Spectrum

#### **Emission lines**

- Modeled as a Gaussian distribution
  - o Center
  - o FWHM (width of the line in km/s)
  - o Total Flux
- Narrow H  $\alpha$  at 6563Å
- [NII] doublet (also originating from NLR)
  - ο [NII]  $\lambda$  6548 is 1/3 flux of [NII]  $\lambda$  6583
- Broad H  $\alpha$

#### Other components

- Continuum
  - Modeled with line: y=1
  - o (subtracted off in real data)
- Noise
  - Modeled with random numbers



## Matching a Spectrum



## 7 Model Parameters

| Parameter                                                                                             | Minimum | Maximum |
|-------------------------------------------------------------------------------------------------------|---------|---------|
| $\log[F_{\mathrm{H}lpha\_\mathrm{narrow}}$ / 10 <sup>-17</sup> erg s <sup>-1</sup> cm <sup>-2</sup> ] | 1       | 5       |
| [NII] $\lambda$ 6583 / H $\alpha$                                                                     | 0.316   | 5.6     |
| $\log[F_{H\alpha\_broad} / 10^{-17} \text{ erg s}^{-1} \text{ cm}^{-2}]$                              | 1       | 5       |
| FWHM(NLR) in km/s                                                                                     | 100     | 800     |
| FWHM(BLR; H $\alpha$ ) in km/s                                                                        | 1000    | 7000    |
| $\Delta v$ (broad relative to systemic) in km/s                                                       | -50     | 1300    |
| Signal-to-noise Ratio                                                                                 | 1       | 20      |

- These 7 parameters completely defines a given object's spectrum
- (to begin with) All parameters are modeled with uniform distributions
- Final goal: to implement more realistic distributions, based on real measurements

## Building the Parameter Distributions: e.g., $F(H\alpha)$



Ho, L. C., Filippenko, A. V., & Sargent, W. L. W. 1997, ApJS, 112, 315

- Distribution for H  $\alpha$  narrow line flux found in Ho et al. (1997a)
- The minimum and maximum values are matched with available data, then used to build uniform distributions
  - $0 10^{-12} 10^{-16}$
  - Use units of  $10^{-17}$  erg s<sup>-1</sup> cm<sup>-2</sup>
  - In log-space our range is (-16 -12) + 17 = (1 5)



## Modeling the H $\alpha$ Broad Flux Variability

- Assume simple sinusoidal variability in broad flux F(t)
  - Model/build distribution of initial broad flux (at first observation)
  - Range of broad flux is the range of variation (to match data)

$$F(t) = A\sin(\omega t + \varphi) \rightarrow F(t) = A\sin\left(\frac{2\pi}{T}t + \varphi\right) + F_{\min} + A$$

- The amplitude (A) is half the range A =  $(F_{max} F_{min})/2$
- The additional terms raise the flux F(t) from being periodic between –A and A to be periodic between F<sub>min</sub> and F<sub>max</sub>
- The initial phase ( $\varphi$ ) is modeled to match the initial distribution of broad H  $\alpha$  fluxes
- Test varying periods of variation (T = 5, 10, 15 years)





- Condition for BLR detection in initial observation:  $f_{H\alpha} > 0.6$ ; i.e., Only strong broad H $\alpha$  is detected
- Condition for BLR detection in later observation:  $f_{H\alpha} > 0.3$  (weaker broad Halpha becomes detectable with better constrast)
- Period of variability tested: T = 10 years
- Plot shows 1% of all modeled objects (random selection of 100/10000 total simulated spectra)

# **Further Directions**

- Use distributions that more closely match those found from surveys
  Instead of modeling as uniform
- Couple the parameters used in modeling H  $\alpha$  broad and narrow fluxes
- Use a distribution of periods for the sample of objects
- Use a distribution for amplitudes (not all AGNs varying to the same degree)
- Develop and test model for narrow line variability (while matching observational data)
- Add stellar continuum of various strengths (instead of assuming it has been completely subtracted out) → very useful for accounting for the lack of BLR in weak AGNs.

• Test new range of parameters for detection thresholds

 Based on this analysis we will be able to place new strong constraints on AGN census → accurate census of SMBHs in the universe