

http://wtlab.iis.u-tokyo.ac.jp/~wataru/lecture/rst/Sect20/A6.html

### Searching for Accreting Supermassive Black Holes in Bulgeless Galaxies

**Jason Ferguson (JMU)**, Anca Constantin (JMU), Shobita Satyapal (GMU), Barry Rothberg (LBTO, GMU)



Example of bulgeless galaxies (Satyapal et al. 2014)

M87 Elliptical Galaxy http://www.astro.cornell.edu/academics/ courses/astro201/galaxies/types.htm

# Missing piece in galaxy evolution puzzle

- Only galaxies with a spheroidal bulge component are found to host super massive black-holes (SMBHs).
  - Do bulgeless galaxies host SMBHs?
- Linear trend between bulge mass and black hole mass
  - Expect to find a  $10^5 \cdot 10^6~M_{\odot}$  black hole, or intermediate mass black hole (IMBH), in bulgeless galaxies
- No evidence for IMBH has been found
  - IMBHs are theorized as an intermediary step for SMBHs based on merger free models of galaxy evolution
  - How do SMBHs become so massive?
  - Chicken or Egg

### How do we find intermediate mass black holes?

- Are they actively accreting?
- Active Galactic Nucleus (AGN): Accretion of matter onto a super massive black hole

Accretion disk creates high energy photons

Narrow Line Region (NLR) is rotating slower than the BLR (hundreds of km/s)



http://imagine.gsfc.nasa.gov/Images/basic/xray/agn.gif

Torus of dust can completely obscure emission lines

Broad Line Region (BLR) contains rapidly rotating gas clouds. Emission lines from the BLR are kinematically broadened to thousands of km/s.

### How to find AGN with IMBHs

- An AGN that hosts an IMBH is expected to be weaker than an AGN that hosts a SMBH
  - Dusty torus can completely obscure view of the AGN
  - High energy photons from the accretion disk heat the torus of dust, which then reemits mid-IR radiation.
- New strategy for identifying obscured AGN using mid-IR colors reveals over 300 bulgeless AGN candidates (Satyapal et al. 2014).
  - Mid-IR colors obtained with the Wide Field Infrared Survey Explorer (WISE)

#### Wise Color-Color Diagram

- In red box = 95% chance of hosting AGN
- Above blue line = 50% chance of hosting AGN (Jarrett et al. 2011)



## Our sample of bulgeless AGN candidates:

- All have W1 W2 > 0.5
- Bright radio emission
- Very Large Array (VLA) observations must be available
  - Radio observations are crucial for determining the amount of obscuration.
  - Quantitative constraints on strength and morphology of star formation
- Found in local universe
  - (z < 0.3)
- Marked by black squares in Color-Color Diagram
  - Located in obscured AGN region as classified by (Wright et al. 2010)

(Wright et al. 2010)

### Hidden Clues in Near-IR

- AGN in bulgeless galaxies are not active in optical wavelengths
  - Optical observations are the traditional method for finding AGN
- No clear sign of AGN ionization present in optical spectra
  - Perhaps too obscured by surrounding dust
  - Need to go to longer wavelengths
    - Near-IR is less affected by dust extinction
- Look for broadened Paschen alpha emission line
  - Doppler broadened from rapidly rotating clouds of gas (along line of sight).
  - Only a black hole is massive enough to broaden emission features to thousands of km/s.
- The ratio of near-IR emission line flux to optical constrains the level of extinction and reddening along the line of sight
  - Compare observed flux ratio to intrinsic ratio (Calzetti et al. 2007)

#### Large Binocular Telescope



http://www.nasa.gov/topics/universe/features/ lbti20101206-i.html#.VvWOp2MbCjg

- Mount Graham, Arizona
- 8-10m telescope
- Two 8.4m mirrors on a single mount
  - First light: 2005
  - Fully operational: 2008
- LUCIFER (LBT NIR Spectrograph Utility with Camera and Integral-Field Unit for Extragalactic Research)
  - Wavelength range:
    - 1.4 μ m-2.2 μ m
- Observations span Nov. 2013 Mar. 2015
- The total integration time for each object was ~20 minutes.

#### **Data Reduction Process**



SDSSJ1224+5555

z=0.052

5

Use known wavelength of

sky emissions to assign proper wavelength to each pixel on the x-axis. Skylines are removed by subtracting individual scaled frames.

H2 1-OS(1)

Bracket  $\gamma$ 



Combine skyline subtracted frames into one 2-D spectrum.

Extract the 1-D spectrum by adding the central 2 pixels (0.5"). Flux calibrate and correct for telluric absorption.



This is the final calibrated and Doppler corrected LBT spectrum of SDSSJ1224+5555 over the entire wavelength range measured by LBT.

#### Results: Final LBT Spectra



- All optical emission lines in SDSS spectra are narrow.
  - No bulge component found in SDSS images.
  - No evidence of gravitational interaction with other galaxies. They are isolated and unlikely to have undergone a significant merger event.
  - No evidence for broad Paα emission line in LBT spectra (FWHM < 1000 km/s)

### Conclusions and Future Research

- No significant evidence for broadened Paschen  $\alpha$  emission lines.
  - Higher signal-to-noise observations needed.
  - If the AGN is oriented pole-on to our line of sight then there will be no Doppler broadening observed.
- AGN either too absorbed or too weak to be detected.
  - Currently investigating different methods to quantify dust extinction using detected near-IR emission features.
  - Extinction used to clarify whether or not the red wise colors are due to star formation or an obscured AGN.
- Follow-up observations in X-ray (XMM-Newton) and radio (VLA) wavelengths
  - Constrain the bolometric luminosities and thus the true origin of the red mid-IR colors.
  - Mass of the putative black hole and its accretion rate
- If there are no AGN found in the bulgeless galaxies:
  - Helps to constrain the fraction of local bulgeless galaxies that host AGN
  - Lends credibility to SMBH merger theories