Image credit: NASA, ESA & A. van der Hoeven; Hubble optical light imaging of NGC 1068

Mid-Infrared Variability of Galaxies Surveyed for Water Megamaser Emissions Emily McPike, Dr. Anca Constantin Department of Physics & Astronomy James Madison University

- I. Background
- II. Question
- III. Methods
- IV. Results

- I. Background
 - I. What is a maser?
 - II. Why are megamasers important?
 - III. Mid-Infrared
 - I. What part of the masing process involves Mid-IR?
- II. Question
- III. Methods
- IV. Results

Astrophysical Megamasers

<u>M</u>icrowave <u>A</u>mplification by <u>S</u>timulated <u>E</u>mission of <u>R</u>adiation

• Water masers detected at v = 22 GHz

Megamasers

- 10⁶ more powerful than masers associated with spiral arms of our galaxy
- Detected in galaxy centers

Megamasers in Galactic Centers

- Perfect disk-like configuration
 - Direct measurement of distances to galaxies
 - Constrains Hubble constant, H₀
 - H_0 = rate at which the universe expands
 - Accurate measurement of SMBH masses
- The need for H_2O maser disks
 - ~3% surveyed galaxies hold masers
 - ~20% maser hosting galaxies in disk-like configuration

2022?

Active Galactic Nucleus (AGN)

Accretion Disk

maser

Dusty torus

Broad line region

- Maser activity may be associated with accretion disk emission
- Accretion disk supplies seed photons for maser emission
- Dust in inner edge of torus provides masing conditions (e.g. temperature, number density)
- Dust reprocesses radiation from accretion disk and re-emits in mid-IR

Mid-IR Emission

- 3 main ionization processes could account for masing activity
 - AGN
 - Hot, young star formation
 - Shocks
- Only AGN capable of short time span variability
- Identifying variability could further connection between masers and AGN

Mid-IR Emission

- 3 main ionization processes could account for masing activity
 - AGN
 - Hot, young star formation
 - Shocks
- Only AGN capable of short time span variability
- Identifying variability could further connection between masers and AGN

- I. Background
- II. Question
 - I. Is there Mid-IR variability?
 - II. Is maser detection dependent on variability?
 - III. Do maser properties correlate with variability?
 - I. How different is this phenomenon for maser hosts vs. galaxies without masers?
- III. Methods
- IV. Results

Variability

vs. galaxies without masers?

- I. Background
- II. Question
- III. Methods
 - I. Where did we get our data from?
- IV. Results

Data Selection

Galaxies Surveyed

- Megamaser Cosmology Project (MCP)
 - International collaboration surveying for 22GHz emission in galaxy centers using GBT, VLA, VLBA, and Effelsberg telescopes (radio)
 - Maser & Non-maser samples

Mid-Infrared Counterparts

- Wide-field Infrared Survey Explorer (WISE)
- Surveyed the sky with best sensitivities in Mid-IR
- Measured brightness (magnitudes W1, W2, W3, W4) of objects at 3.4 , 4.6, 12 & 22 μm
 - WISE "bands"

Cross-matching & Data Selection

- Find counterparts of MCP data in WISE catalogs (NASA/IPAC)
- Data sifting
 - Learn SQL
 - Removing duplicates
- Re-cross-match with Multiepoch Photometry catalog
 - Multiple observations over time scales of hours to years

Cross-matching & Data Selection

- Find counterparts of MCP data in WISE catalogs (NASA/IPAC)
- Data sifting (took a summer!!)
 - Learn SQL
 - Removing duplicates
- Re-cross-match with Multiepoch Photometry catalog
 - Multiple observations over time scales of hours to years

Help Tools Query History MyDB	Import G	roups Output	Schema Browser	Queues SkyServer	
MyDB 🗸 Local Only					
Views	cntr_	_01 dist_x	pang_x	mcp_count_01 source_0)1 ra_01
Tables	smal	lint [2] real [4]	real [4]	smallint [2] text [MA	X] real [4]
Functions			,		
Procoduras	cotr	01 dict x na		t 01 source 01	ra 01 dec 01
Flocedules		0 702116 -8	8 20296 1	PYS100001±0523	
Date V All selected V	2	1 106021 40	0.202901	KUG2358±330	0.04908 33 34380
Powe kB Namo	2	1 030782 81	63853 3	00012330+330	0.24208 33.34389
172 72 masors d w2 minus w2	<u>л</u>	0 287303 10	105055 5 18 5523 1	NGC7805	0.34700 47.30432
3 982 136 nonmaser d w2 minus w	3 5	0.207353 10	8 91259 5	NGC7806	0.3013 31.43372
3 982 136 nonmaser d w3	6	0 119134 78	84895 6	0001383+2329011	0.37323 31.44100
173 72 masers d w3	7	0 570163 68	51782 7	000130312323011	0.40307 23.40304
61 72 Megamasers	8	0.376333 14	1 6662 8	LIGC12915	0.42450 23.49570
6 72 megamaser d w1 minus	v2 at 9	0.64766 -4	3 54569 10	0001523+4020109	0.46792 40 33636
9 72 megamaser_d_w1_minus_	w2_gt 10	0 499511 -1	63 2989 11	CGCG517-014	0 49371 36 64919
375 72 nonmaser_d_w1_minus_w	2_gt_ 11	0.669477 -8	3 26797 12	NGC7811	0.61029 3 35189
747 72 nonmaser_d_w1_minus_w	2_gt_ 12	4 88199 -1	02 1401 13	MRK334	0 79146 21 96053
25 72 maser_d_w1_minus_w2_g	t_ 0_5	0.026535.14	7 2612 14	UM016	0 79175 4 74894
15 72 maser_d_w1_minus_w2_g	_0_8	0 990427 17	0 6971 15	NGC7814	0 81208 16 14558
4,196 1,544 irsa_su21totalgalaxies_6ar	cs_en 15	0 526694 77	00446 16	UGC13	0 87167 27 35164
428 72 irsa_su21totalgalaxies_6ar	cs_en 16	0.420858 67	.83782 17	NGC7808	0.88375 -10.7447
4,185 72 irsa_su21totalgalaxies_6ar	cs_en 17	0.54171 85	.88416 19	NGC7817	0.99546 20.75231
174 72 maser_d_w1_minus_w2	18	0.106305 -1	01.7235 20	NGC7819	1.10225 31.47203
5,626 136 maser_w1_minus_w2	19	1.28942 -1	38.3661 21	000435+005055	1.14675 31.47203
3,995 136 nonmaser_d_w1_minus_w	20	0 152100 42		MISPARA	1 59137 20.20292
141,505 3,2/2 nonmaser_w1_minus_w2		1.687432 16	3.4877 24	J0006+1419	1.58171 14.32742
2 005 126 nonmaser_min_max_w2_d	21	3.575315 -2	9.07394 24	J0006+1419	1.58171 14.32742
174 72 maser min max w2 dw2	23	0.200400 1	22 2403 26	LIGC00047	1.05903 17.28422
174 72 maser min max w1 dw1	24	0.253949 -1	00.785 27	UGC00050	1.66733 26.15447
4.912 1.096 irsa su21 totalgalaxies 6ar	cs wi 25	0.664698 17	6.531 28	UGC52	1.70617 8.62853
810 72 mep 3arcs will notin emi	v 26	0 520202 10	3.0130 29	NGCI	1.91596 27.70808
540 72 mep 3arcs emily notin w	ili 27	2.171865 13	6.8576 30	2MASXJ00082041+	2.08542 40.6325
4.266 72 su21totalgalaxies 3arcs m	ep . 27	2.795625 -7	3.18051 30	2MASXJ00082041+	2.08542 40.6325

Example of duplicates in a table in the CasJobs database

Cross-matching & Data Selection

- Find counterparts of MCP data in WISE catalogs (NASA/IPAC)
- Data sifting
 - Learn SQL
 - Removing duplicates
- Re-cross-match with Multiepoch Photometry catalog
 - Multiple observations over time scales of hours to years

	AllWISE Database
Selection	Descriptions
0	AllWISE Source Catalog
\bigcirc	AllWISE Multiepoch Photometry Table
\bigcirc	AllWISE Reject Table
\bigcirc	AllWISE Atlas Metadata Table
\bigcirc	AllWISE Frame Cross-Reference Table
\bigcirc	AllWISE Atlas Inventory Table
0	AllWISE Atlas Image Inventory Table
0	AllWISE Refined Pointing Information for the Single-exposure Images

- I. Background
- II. Question
- III. Methods
- IV. Results

Preliminary Results

Is there Mid-IR variability? Yes!

 Examples of variability in individual bands (W1, W2) and the W1 – W2 color

- Statistical comparison in the distribution of the change in the color of maser and nonmaser galaxies
- Δ (W2-W3) greater for nonmasers
- Δ (W1-W2) shows similar trend, although less statistically significant

Acknowledgements

This work has been supported by JMU's Physics and Astronomy Department and the National Science Foundation award NSF:AST #1814594. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

