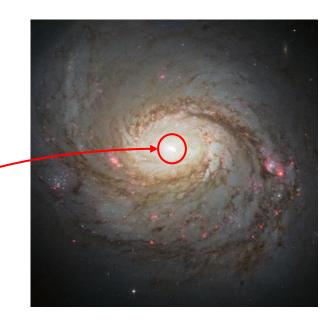

Image credit: NASA, ESA & A. van der Hoeven; Hubble optical light imaging of NGC 1068

Mid-Infrared Variability of Galaxies Surveyed for Water Megamaser Emissions Emily McPike, Dr. Anca Constantin Department of Physics & Astronomy James Madison University

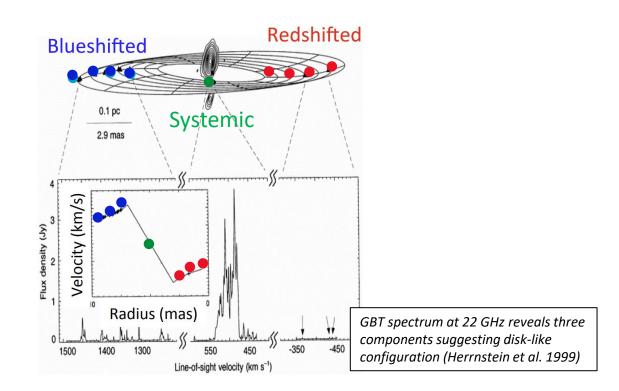


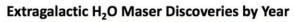
### **Astrophysical Megamasers**

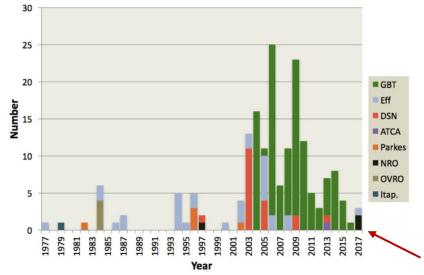

<u>M</u>icrowave <u>A</u>mplification by <u>S</u>timulated <u>E</u>mission of <u>R</u>adiation



• Water masers detected at v = 22 GHz


#### Megamasers


- 10<sup>6</sup> more powerful than masers associated with spiral arms of our galaxy
- Detected in galaxy centers




### Megamasers in Galactic Centers

- Perfect disk-like configuration
  - Direct measurement of distances to galaxies
    - Constrains Hubble constant, H<sub>0</sub>
    - $H_0$  = rate at which the universe expands
  - Accurate measurement of SMBH masses
- The need for  $H_2O$  maser disks
  - ~3% surveyed galaxies hold masers
  - ~20% maser hosting galaxies in disk-like configuration





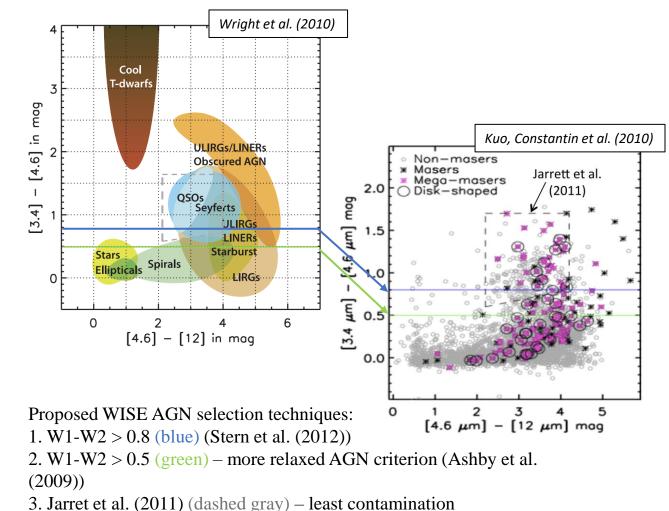


2022?

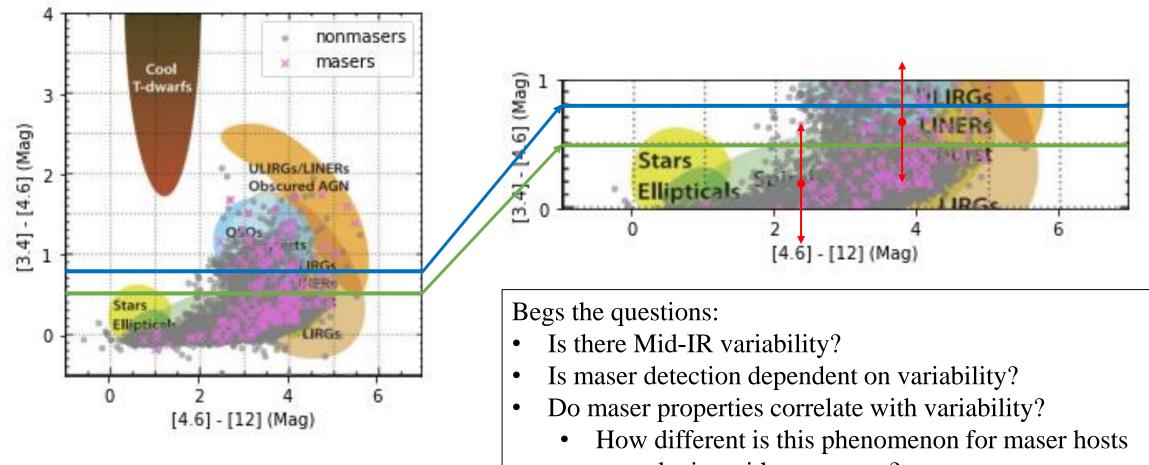
### Active Galactic Nucleus (AGN)

Accretion Disk

maser

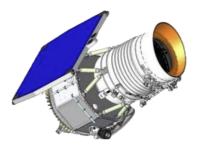

Dusty torus

Broad line region


- Maser activity may be associated with accretion disk emission
- Accretion disk supplies seed photons for maser emission
- Dust in inner edge of torus provides masing conditions (e.g. temperature, number density)
- Dust reprocesses radiation from accretion disk and re-emits in mid-IR

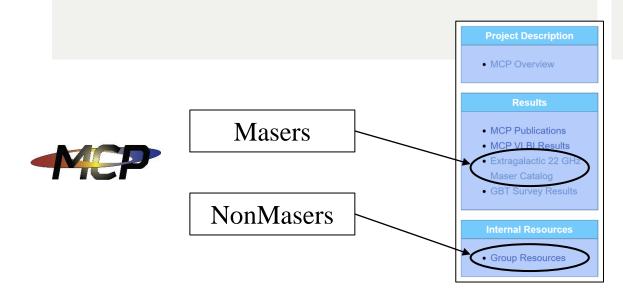
## **Mid-IR Emission**

- 3 main ionization processes could account for masing activity
  - AGN
  - Hot, young star formation
  - Shocks
- Only AGN capable of short time span variability
- Identifying variability could further connection between masers and AGN



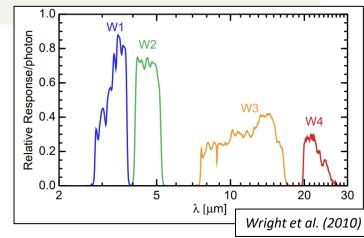

### Variability




vs. galaxies without masers?

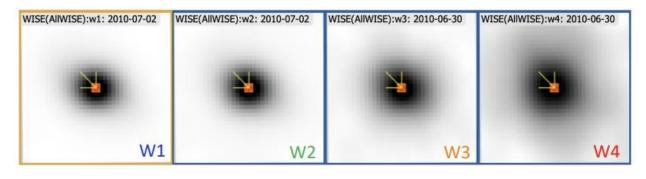
# **Data Selection**




#### Galaxies Surveyed

- Megamaser Cosmology Project (MCP)
  - International collaboration surveying for 22GHz emission in galaxy centers using GBT, VLA, VLBA, and Effelsberg telescopes (radio)
  - Maser & Non-maser samples




#### Mid-Infrared Counterparts

- Wide-field Infrared Survey Explorer (WISE)
- Surveyed the sky with best sensitivities in Mid-IR
- Measured brightness (magnitudes W1, W2, W3, W4) of objects at 3.4, 4.6, 12 & 22 μm
  - WISE "bands"



# **Cross-matching & Data Selection**

- Find counterparts of MCP data in WISE catalogs (NASA/IPAC)
- Data sifting
  - Learn SQL
  - Removing duplicates
- Re-cross-match with Multiepoch Photometry catalog
  - Multiple observations over time scales of hours to years



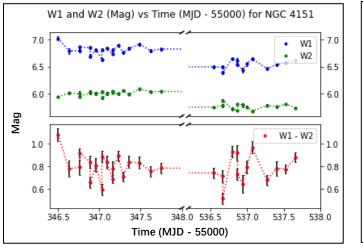
MCP object coordinates represented by yellow arrow. Coordinates of WISE Mid-IR matches of MCP objects represented by red squares.

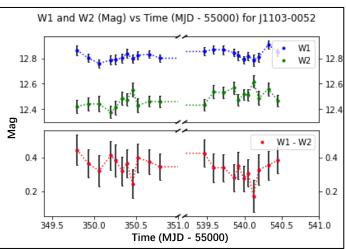
# **Cross-matching & Data Selection**

- Find counterparts of MCP data in WISE catalogs (NASA/IPAC)
- Data sifting (took a summer!!)
  - Learn SQL
  - Removing duplicates
- Re-cross-match with Multiepoch Photometry catalog
  - Multiple observations over time scales of hours to years

| Help Tools Query History MyDB Impo                                                    | rt Group | os Outpu   | t Schei   | ma Browser | Queues     | SkyServer     |         |         |
|---------------------------------------------------------------------------------------|----------|------------|-----------|------------|------------|---------------|---------|---------|
| MyDB 🗸 Local Only 🗸                                                                   |          |            |           |            |            |               |         |         |
| Views                                                                                 | cntr_01  | dist_:     | x         | pang_x     | mcp_coun   | t_01 source_0 | )1  ra_ | _01     |
| Tables                                                                                | smallint | [2] real [ | [4]       | real [4]   | smallint [ | 2] text [MA   | X] rea  | ıl [4]  |
| Functions                                                                             | •        |            |           |            |            |               |         |         |
| Procedures                                                                            | cntr 01  | dist x     | pang x    | mcp_count  | 01 sourc   | e 01          | ra 01   | dec 01  |
|                                                                                       | 1        | 0.792116 - |           |            |            | 0001+0523     | 0.04908 |         |
| Date $\checkmark$ All selected $\checkmark$                                           | 2        | 1.106021 4 | 49.75174  | 2          | KUG2       | 358+330       | 0.24208 | 33.3438 |
| Rows kB Name                                                                          | 3        | 1.039782 8 | 81.63853  | 3          | 00012      | 33+4733537    | 0.34708 | 47.5649 |
| 173 72 masers d w2 minus w3                                                           | 4        | 0.287393   | 108.5523  | 4          | NGC78      | 805           | 0.3615  | 31.4337 |
| 3,982 136 nonmaser_d_w2_minus_w3                                                      | 5        | 0.239743 - | -18.91259 | € 5        | NGC78      | 806           | 0.37525 | 31.4418 |
| 3,982 136 nonmaser_d_w3                                                               | 6        | 0.119134   | 78.84895  | 6          | 00013      | 83+2329011    | 0.40967 | 23.4836 |
| 173 72 masers_d_w3                                                                    | 7        | 0.570163 6 | 58.51782  | 7          | 00014      | 19+2329452    | 0.42458 | 23.4957 |
| 61 72 Megamasers                                                                      | 8        | 0.376333 : | 141.6662  | 8          | UGC12      | 2915          | 0.42467 | 23.4959 |
| 6 72 megamaser_d_w1_minus_w2_gt                                                       | 9        | 0.64766 -  | -43.54569 | ə 10       | 00015      | 23+4020109    | 0.46792 | 40.3363 |
| 9 72 megamaser_d_w1_minus_w2_gt                                                       | 10       | 0.499511 - | -163.2989 | Ə 11       | CGCG       | 517-014       | 0.49371 | 36.6491 |
| 375 72 nonmaser_d_w1_minus_w2_gt_                                                     | 11       | 0.669477 - | -83.26797 | 7 12       | NGC78      | 811           | 0.61029 | 3.35189 |
| 747 72 nonmaser_d_w1_minus_w2_gt_                                                     | 12       | 4.88199 -  | -102.1401 | l 13       | MRK3       | 34            | 0.79146 | 21.9605 |
| 25 72 maser_d_w1_minus_w2_gt_0_5                                                      | 13       | 0.026535 : | 147.2612  | 14         | UM010      | 5             | 0.79175 | 4.74894 |
| 15 72 maser_d_w1_minus_w2_gt_0_8                                                      | 14       | 0.990427   | 170.6971  | 15         | NGC78      | 814           | 0.81208 | 16.1455 |
| 4,196 1,544 irsa_su21totalgalaxies_6arcs_en<br>428 72 irsa su21totalgalaxies 6arcs en | 15       | 0.526694   | 77.00446  | 16         | UGC1       | 3             | 0.87167 | 27.3516 |
| 428 72 irsa_su21totalgalaxies_6arcs_en<br>4,185 72 irsa su21totalgalaxies 6arcs en    | 16       | 0.420858 6 | 57.83782  | 17         | NGC78      | 808           | 0.88375 | -10.744 |
| 174 72 maser_d_w1_minus_w2                                                            | 17       | 0.54171 8  | 85.88416  | 19         | NGC78      | 817           | 0.99546 | 20.7523 |
| 5,626 136 maser w1 minus w2                                                           | 18       | 0.106305 - | -101.7235 | 5 20       | NGC78      | 819           | 1.10225 | 31.4720 |
| 3,995 136 nonmaser_d_w1_minus_w2                                                      | 19       | 1.28942 -  | -138.3661 | l 21       | 00043      | 5+005055      | 1.14675 | 31.4720 |
| 141,565 3,272 nonmaser w1 minus w2                                                    | 20       | 0 152100   | 12.44010  | 22         | MIKNO      | 55            | 1 59137 | 20.2029 |
| 3,995 136 nonmaser_min_max_w2_dw2                                                     | 21       | 1.687432   | 163.4877  | 24         | J0006      | +1419         | 1.58171 | 14.3274 |
| 3,995 136 nonmaser min max w1 dw1                                                     | 21       | 3.575315 - |           |            |            | +1419         | 1.58171 | 14.3274 |
| 174 72 maser_min_max_w2_dw2                                                           | 23       | 0.200430   | 122 3403  | 2.26       | LIGCO      |               |         | 17.2842 |
| 174 72 maser_min_max_w1_dw1                                                           | 24       | 0.253949 - | -100.785  | 27         | UGC0       |               | 1.66733 | 26.1544 |
| 4,912 1,096 irsa_su21totalgalaxies_6arcs_wi                                           | 25       | 0.664698   | 176.531   | 28         | UGC52      | 2             |         | 8.62853 |
| 810 72 mep_3arcs_will_notin_emily                                                     | 26       |            | 109.0150  |            | NGCI       |               | 1.91596 |         |
| 540 72 mep_3arcs_emily_notin_will                                                     | 27       | 2.171865   |           |            |            | XJ00082041+   |         |         |
| 4,266 72 su21totalgalaxies_3arcs_mep_                                                 | 27       | 2.795625 - | -73.18051 | 1 30       | 2MAS       | XJ00082041+   | 2.08542 | 40.6325 |

# **Cross-matching & Data Selection**


- Find counterparts of MCP data in WISE catalogs (NASA/IPAC)
- Data sifting
  - Learn SQL
  - Removing duplicates
- Re-cross-match with Multiepoch Photometry catalog
  - Multiple observations over time scales of hours to years


|            |                                                 | AllWISE Database      |
|------------|-------------------------------------------------|-----------------------|
| Selection  | De                                              | escriptions           |
| 0          | AllWISE Source Catalog                          |                       |
| $\bigcirc$ | AllWISE Multiepoch Photometry Table             | >                     |
| $\bigcirc$ | AllWISE Reject Table                            |                       |
| $\bigcirc$ | AllWISE Atlas Metadata Table                    |                       |
| $\bigcirc$ | AllWISE Frame Cross-Reference Table             |                       |
| $\bigcirc$ | AllWISE Atlas Inventory Table                   |                       |
| 0          | AllWISE Atlas Image Inventory Table             |                       |
| 0          | AllWISE Refined Pointing Information for the Si | ingle-exposure Images |

### **Preliminary Results**

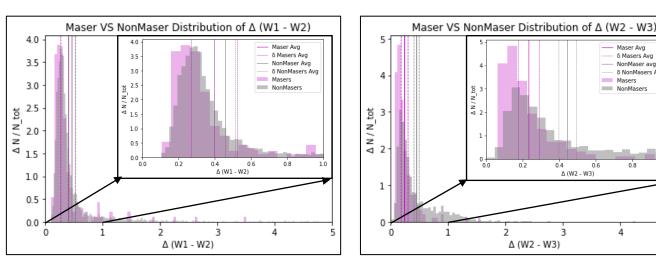
Is there Mid-IR variability? Yes!

Examples of variability in individual bands (W1, W2) and the W1 - W2color





Maser Avg


δ Masers Avg

NonMaser avg

0.8

δ NonMasers Avo

- Statistical comparison in the • distribution of the change in the color of maser and nonmaser galaxies
- $\Delta$ (W2-W3) greater for nonmasers
- $\Delta$ (W1-W2) shows similar trend, although less statistically significant



### Acknowledgements

This work has been supported by JMU's Physics and Astronomy Department and the National Science Foundation award NSF:AST #1814594. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

