Probing the Connection Between Water Maser and X-ray Emission in Galaxy Centers

Drew Nutter

Cosmology

- Directly calculate extragalactic distances.
- Hubble Constant

Supermassive Black Hole

Most accurate measurement for mass

Masing Conditions in Megamasers

Active Galactic Nucleus (AGN):
Central supermassive black hole with active accretion.

- X-ray emission from accretion disk heats surrounding clouds of gas.
- This heat provides energy to create population inversion required for maser emission.

H₂O Maser Requirements:

Cool enough to form molecules
Warm enough for population inversion.

- High abundance of H₂O

Non-masing zones:

-Inner area too hot: Atoms only.
-Outer area too cool: Quenched.
-Through radiative trapping, outer area insulates middle masing area

"Blazar" Viewing down the jet

Obscuration

Viewing at 90° from the jet

Viewing at an angle to the jet

Column Density (N_H): Density of Hydrogen atoms along the line of sight.

Black Hole .

- Intrinsic N_H : Column density inherent to object viewed
- Galactic N_{H} : Column density within Milky Way

- Torus around accretion disk obscures X-ray emission (intrinsic N_H)

- Differing levels of obscuration depending upon angle viewed

Torus of Neutral Gas and Dust

- Strength of maser emission may correlate to column density.

Catalogs

Previous Studies: 40 total galaxies examined with varying degrees of maser emission. <u>Megamaser Cosmology Project</u> - 151 total megamasers found (103 in X-ray catalogs) - 3339 non-maser galaxies identified (650 in X-ray catalogs)

<u>ROSAT All-Sky Survey (RASS)</u> 0.1-2.4 keV (soft X-ray)

Integral IBIS 7 year Survey 17 – 60 keV (hard X-ray) XMM-Newton Serendipitous Survey 0.2 – 12 keV (soft X-ray)

> Chandra Source Catalog 0.1-10 keV (soft X-ray)

Swift Burst Alert Telescope 70 month Survey 14 – 195 keV (hard X-ray)BAT

XRT

UVOT

Cross-matching X-ray catalogs

- MCP objects identified by finding objects in X-ray catalog within given angular separation.
- Telescopes' varying accuracies make crossmatching difficult.
- Must select angular separation that avoids mismatches and includes positive matches.

- Histogram of all matches fits Rayleigh distribution with linear component for randoms.
- Ideal search should identify where random matches begin to dominate.

Selecting Angular Separation

- Percent Increase Factor (PIF): Novel method developed to aid angular separation selection.
- Represents rate of change of number of matches per annulus between search radii.
- Maximum approximates inflection points over curve that would fit histogram.
- Inflection point signals beginning of dominance of random matches (linear component).

Accounting for Positional Error

Detection rates

	Mean	Non-masers	Masers	Non-maser	Maser	maser rate
Catalog	Energy (keV)	count	count	detection rate	detection rate	non-maser rate
RASS Faint Source	1.25	74	9.0	0.022	0.060	2.689
RASS Bright Source	1.25	151	13.0	0.045	0.086	1.904
Chandra	5.05	144	28	0.043	0.185	4.300
XMM-Newton	6.10	294	49	0.088	0.325	3.685
Swift-BAT	104.50	187	33	0.056	0.219	3.902
Integral	38.50	14	5	0.004	0.033	7.897
MEAN	26.11	864	137.0	0.043	0.151	3.506

Masers have X-ray detection rate 3.5 times as great as non-masers

Calculated flux for each object considering catalog's flux or count rate

X-ray Fluxes

- Used Galactic (Milky Way) N_H to account for absorption.
 - Merged Chandra and XMM-Newton data for 0.5-10 keV range.
- Similar fluxes between masers and non-masers for soft X-rays. (mean flux values listed)
- In harder X-rays (higher energy), masers have increasingly greater flux than non-masers.

Luminosity Distance

- Calculating astronomical distances is tricky.
- Luminosity distance(d_L): Distance light has traveled, not necessarily actual distance.
- Modeled from redshift based on estimate of Hubble constant.
- Varies widely depending on model.
- Necessary to determine intrinsic luminosity of an object from its flux.
- Masers are important partly because they can give us a method to directly calculate this.

X-ray Luminosity

- $L = 4\pi \times d_L^2 \times F$
- Non-masers consistently more luminous (mean luminosity values listed).

Discussion

- Data resulting from crossmatch represents X-ray active subset of MCP all-surveyed.
- High maser detection rate suggests megamasers are more X-ray active than non-masers.
- Megamaser galaxies are increasingly active in harder X-rays.
- Among X-ray active sources, non-maser sources are more X-ray luminous than masers.
- Maser emission previously associated with obscuration.
- Lower intrinsic luminosities may represent X-ray obscuration, providing evidence for new constraint in megamaser search.

