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What is a Water Maser?
● Microwave Amplification by Stimulated Emission of Radiation

○ Comes from water molecule clouds near star forming regions or 
centers of galaxies with active supermassive black holes

● Mega-Masers
○ 106 more luminous than regular masers.
○ Important to measure distances to galaxies, to ultimately constrain 

Hubble’s Constant
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● Data comes from MegaMaser 
Cosmology Project, crossmatched 
with data from Sloan Digital Sky 
Survey spectroscopic surveys.



The Problem
● Imbalanced dataset

○ ~3-5% of data is mega-masers
○ In classification problems, this is hard to deal with 

● The goal: create a model to classify correctly mega-masers 
from non-masers and (later) predict mega-maser 
emissions from observed galaxies
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Methods Used

● Random Forest
○ Used to classify response using a “forest” of decision trees created 

through bagging (bootstrapping and aggregating).
○ Trains weak learners simultaneously

● Boosting
○ Trains sequentially to combine weak learners into stronger ones. 
○ Boosting minimizes loss functions to better predict data!
○ LogitBoost minimizes logistic loss of an additive regression model.
○ AdaBoost minimizes exponential loss of an additive regression 
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Each method is good in its own way!

● Random forest
○ Pros:

■ Does not overfit with many predictors. 
■ Efficient in classification, but not typically the best

○ Cons:
■ Struggles with computational time
■ Struggles to make a predictive model with significance of each parameter.

● Boosting (LogitBoost and AdaBoost)
○ Pros: 

■ Good with missing data and binary classification problems 
■ Combines weak learners to train itself over time.

○ Cons:
■ Boosting in general is difficult to fine-tune 
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SMOTE (Synthetic Minority Oversampling 
Technique)
Description:

Pro & Con:

● Great at dealing with imbalanced data
● Can overfit with lots of noise, especially with high oversampling

● Synthetically generates new data 
● Oversamples minority class / 

undersamples majority class
● Then run analysis / ML
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● Kappa

Kappa is accuracy  (TP + TN) / (TP + FP + FN + TN) 
when random chance is introduced.

● Sensitivity

Sensitivity = TP / (TP + FN)

● Specificity

Specificity = TN / (TN + FP)

Assessment Tools for Classification

Confusion Matrix

TP: True Positive; positive classification
TN: True Negative; negative classification
FP: False Positive; incorrect positive classification
FN: False Negative; incorrect negative classificiaton

TP FP

FN TN
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Our Goal this Summer

● Lots of fine-tuning and exploration this summer!
○ A considerable chunk was spent fine tuning code, testing 

arguments that we thought would change the results but didn’t. 
● Machine learning methods are tested at various splits of 

training/testing set ratios. 
○ 50/50 //// 60/40 //// 75/25
○ Different split ratios can impact the results!

● Each method was iterated 100 times under the same seed for 
reproducibility.
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Results

Kappa values are low! Typically we want 0.80+.
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Results (cont.)

Sensitivity is high! This is what we expect.

Specificity is also low most of the time. This is because the data is imbalanced!
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Conclusions & future work
● No conclusions…. Yet!
● Explore different methods and explore other measures of classification 
● Make a prediction model based on the data using an equation derived from the 

optimal classifier and optimal measure.
● Conduct an investigation using ROC (Receiving Operating Characteristic) curve to 

determine the optimal tradeoff between sensitivity and specificity.
● Investigate why SMOTE underperforms with Boosting.
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