Exploration of Statistical Learning Methods to Classify and Predict Water Maser Phenomena

Ty Nunley

With support from Dr. Anca Constantin and Dr. Nusrat Jahan

What is a Water Maser?

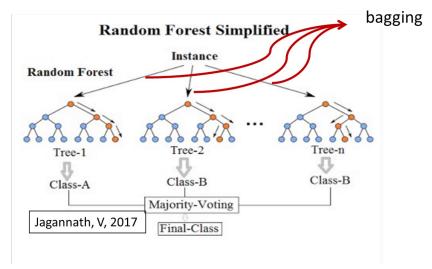
- Microwave Amplification by Stimulated Emission of Radiation
 - Comes from water molecule clouds near star forming regions or centers of galaxies with active supermassive black holes
- Mega-Masers
 - $\circ~~10^6$ more luminous than regular masers.
 - Important to measure distances to galaxies, to ultimately constrain Hubble's Constant
- Data comes from MegaMaser
 Cosmology Project, crossmatched
 with data from Sloan Digital Sky
 Survey spectroscopic surveys.

The Problem

- Imbalanced dataset
 - ~3-5% of data is mega-masers
 - In classification problems, this is hard to deal with

• The goal: create a model to classify correctly mega-masers from non-masers and (later) predict mega-maser emissions from observed galaxies

Methods Used



- Random Forest
 - Used to classify response using a "forest" of decision trees created through bagging (bootstrapping and aggregating).
 - Trains weak learners **simultaneously**

• Boosting

- Trains **sequentially** to combine weak learners into stronger ones.
- Boosting minimizes loss functions to better predict data!
- LogitBoost minimizes **logistic** loss of an additive regression model.
- AdaBoost minimizes exponential loss of an additive regression model.

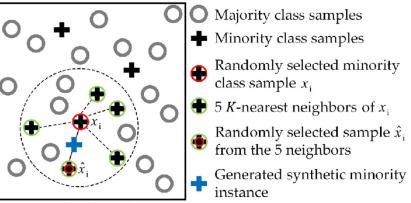
Each method is good in its own way!

- Random forest
 - <u>Pros:</u>
 - Does not overfit with many predictors.
 - Efficient in classification, but not typically the best
 - <u>Cons:</u>
 - Struggles with computational time
 - Struggles to make a predictive model with significance of each parameter.
- Boosting (LogitBoost and AdaBoost)
 - <u>Pros:</u>
 - Good with missing data and binary classification problems
 - Combines weak learners to train itself over time.
 - o <u>Cons:</u>
 - Boosting in general is difficult to fine-tune

SMOTE (Synthetic Minority Oversampling Technique)

Description:

- Synthetically generates new data
- Oversamples minority class / undersamples majority class
- Then run analysis / ML

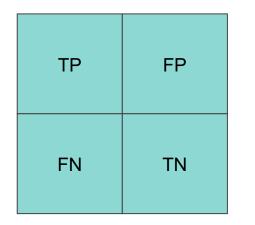


Pro & Con:

- Great at dealing with imbalanced data
- Can overfit with lots of noise, especially with high oversampling

Assessment Tools for Classification

Confusion Matrix



• Карра

Kappa is accuracy (TP + TN) / (TP + FP + FN + TN)when random chance is introduced.

• Sensitivity

Sensitivity = TP / (TP + FN)

• Specificity

Specificity = TN / (TN + FP)

TP: True Positive; positive classification TN: True Negative; negative classification FP: False Positive; incorrect positive classification FN: False Negative; incorrect negative classificiaton

Our Goal this Summer

- Lots of fine-tuning and exploration this summer!
 - A considerable chunk was spent fine tuning code, testing arguments that we thought would change the results but didn't.
- Machine learning methods are tested at various splits of training/testing set ratios.
 - 50/50 //// 60/40 //// 75/25
 - Different split ratios can impact the results!
- Each method was iterated 100 times under the same seed for reproducibility.

Results

Test Set Kappa Values for Various Methods							
Split (Train/Test)	Random Forest	RF with SMOTE	LogitBoost	LB with SMOTE	Adaboost	AB w/ SMOTE	
50%/50%	0.3139015	0.3595253	0.5035764	0.3847365	0.4601629	0.4239876	
60%/40%	0.3521292	0.3644899	0.4820578	0.3839502	0.4953192	0.3873108	
75%/25%	0.3986459	0.3719552	0.5116384	0.4068302	0.5105	0.3983504	

Kappa values are low! Typically we want 0.80+.

Results (cont.)

Test Set Sensitivity Values for Various Methods							
Split (Train/Test)	Random Forest	RF with SMOTE	LogitBoost	LB with SMOTE	Adaboost	AB with SMOTE	
50%/50%	0.9927	0.913203	0.971296	0.9861795	0.9678561	0.9819045	
60%/40%	0.9921992	0.9133835	0.9729595	0.9875934	0.9693536	0.9831904	
75%/25%	0.9915	0.9106006	0.9731638	0.9875662	0.9697	0.9825604	

Sensitivity is high! This is what we expect.

Test Set Specificity Values for Various Methods								
Split (Train/Test)	Random Forest	RF with SMOTE	LogitBoost	LB with SMOTE	Adaboost	AB with SMOTE		
50%/50%	0.2303	0.6677143	0.9002408	0.3015472	0.6880046	0.3547212		
60%/40%	0.2678571	0.6768	0.6511	0.2969201	0.7307905	0.3125355		
75%/25%	0.3116667	0.6961111	0.7098248	0.3186489	0.7270	0.3256054		

Specificity is also low most of the time. This is because the data is imbalanced!

Conclusions & future work

- No conclusions.... Yet!
- Explore different methods and explore other measures of classification
- Make a prediction model based on the data using an equation derived from the optimal classifier and optimal measure.
- Conduct an investigation using ROC (Receiving Operating Characteristic) curve to determine the optimal tradeoff between sensitivity and specificity.
- Investigate why SMOTE underperforms with Boosting.

References

Friedman, J. et al., 2000

Zierr, C. & Biermann, P., 2018, A&A, 69, 1

Bowyer et al., 2002

Chawla, N. et al., 2001

Bühlmann, P & Dettling, M., 2002

Images:

https://rikunert.com/smote_explained

Jagannath, V, 2017

ESA/Hubble & NASA