UNDERSTANDING SUPERMASSIVE BLACK HOLE ACCRETION THROUGH
H,0 MEGA-MASER STATISTICS

Emil Christensen, Anca Constantin, James Corcoran, Nathan DiDomenico

Abstract
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Kauffmann et al. 2003) for maser galaxies, non-maser
galaxies (control), and the mega-maser subset. This
comparison uses only the SDSS spectroscopy (46
maser galaxies & ~¥1200 non-masers). While there is
no apparent difference in the host stellar masses
there seems to be a significant difference in age, in
the sense that maser galaxies are younger than the
""" non-maser ones.

We present here the results of the first comprehensive multi-parameter analysis of photometric and
spectroscopic measurements of galaxies with and without maser emission. We found that the maser
activity is related to a narrow range in a suite of physical characteristics that pertain to both accretion
strength and efficiency as well as nuclear star formation. We interpret these results in the frame of
current models of galactic evolution processes in which the mega-maser disk detection can be related to
a certain brief phase in the active galactic nucleus lifetime. This analysis is particularly important in light
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