A Multi-Parameter Statistical Analysis of the Connection Between H₂O Maser Emission and Nuclear Galactic Activity – or –

How to Hunt Masers with Statistics

Emil Christensen

Department of Physics and Astronomy James Madison University

This work benefitted from collaboration with James Corcoran, Nathan DiDomenico, Robert Roten, Emily Dick and members of the Mega-Maser Cosmology Project (MCP) and from the generous advice and support of Dr. Anca Constantin

Article published on www.jmu.edu/stories (March 2013)

Motivation

> 3500 objects surveyed 150 masers found! ≈ 4% maser detection rate ≈ 2% mega-maser (L_{H2O} > 10 L_{SUN}) < 1% in crucial disk like configuration

Extragalactic H₂O Maser Discoveries by Year

Optical Spectral Data

^a Galaxies with both Palomar and SDSS spectra; in these cases, we adopt the Palomar spectra and measurements.

^b Bennert et al. (2004); Dahari & De Robertis (1988); Kim et al. (1995); Whittle (1992); Neugebauer et al. (1976); Adams & Weedman (1975); Phillips et al. (1983); Osterbrock & De Robertis (1985); Goodrich & Osterbrock (1983); De Robertis & Osterbrock (1986); Moustakas & Kennicutt (2006); Buttiglione et al. (2009)

So what are we looking at again?

Not all masers are Seyferts

Potential observational bias

Individual Parameter Comparisons

Hα, [O III] and [O I] luminosity distributions clearly different as we would expect!

High detection rates for certain "goldilocks regions."

Ok, they're different. So what?

More than double the detection rate for a simple 2 parameter constraint!

N-parameters Part I: Principal Component Analysis

https://onlinecourses.science.psu.edu/stat857/book/export/html/11

- A transformation of the variables into new linearly uncorrelated variables called principal components (PCs).
- Each PC attempts to account for as much of the variance as possible
- Reduces dimensionality and information redundancy

http://www.cs.cmu.edu/~elaw/papers/pca.pdf

PCA Results

EIGENVECTORS FOR COMBINED MASERS AND CONTROL							
Variable	EV-1 31.6%	EV-2 47.2%	EV-3 59.0%	EV-4 69.4%	EV-5 78.2%		
z	0.218	-0.448	-0.164	-0.404	-0.320		
σ^*	0.276	0.182	0.254	-0.008	0.062		
$H\alpha/H\beta$	0.002	0.111	0.664	-0.238	-0.625		
$\lambda\lambda 6716/6731$	-0.090	0.146	-0.357	-0.792	0.043		
Log L [OIII]	0.275	-0.620	0.025	0.021	-0.012		
$Log [OIII]/H\beta$	0.389	-0.337	-0.001	0.147	0.044		
$Log [NII]/H\alpha$	0.450	0.282	0.057	-0.022	-0.083		
$Log [SII]/H\alpha$	0.442	0.309	-0.178	-0.037	0.034		
$Log OI/H\alpha$	0.489	0.217	-0.119	0.013	0.036		
L H ₂ O	0.070	-0.113	0.540	-0.358	0.700		

PC-1 -> Correlation of the four line ratios confirming the Line Diagnostic Diagram.

PC-2 -> Correlation of redshift and [OIII] luminosity (distant objects are more intrinsically luminous) **PC-3** -> Correlation of $H\alpha/H\beta$ (reddening due to dust) and H_2O luminosity (maser strength)

EV's provide good separation between masers and non-masers

N-parameters Part II: Discriminant Analysis

- Finds a linear combination of variables that optimizes the separation of two or more groups
- We desire to construct a Discriminant function which can then be applied to new data

DA Preliminary Results

N

99

0

200 400

7

40

	Classified as maser	Classified as non-maser	Total
Actual maser	17	51	68
Actual non- maser	11	1297	1308
Classification Accuracy	25%	99.2%	

$\begin{bmatrix} \mathbf{1} \\ \mathbf{1} \\ \mathbf{2} \\ \mathbf{2}$

-6 -2 2 6

Optimal maser detection rate: 60.7% Maser misclassification rate: 75%

Type	Maser			Mega-Maser			Disk		
	Masers	Control	% of Total Masers	Masers	Control	% of Total Masers	Masers	Control	% of Total Masers
				1			1		
Total	1735	298851	100%	1191	299395	100%	888	299698	100%
HII	1088	210881	63%	573	211396	48%	612	211357	69%
Transition	126	52848	7%	113	52861	9%	16	52958	2%
Seyfert	389	12142	22%	383	12148	32%	238	12293	27%
LINER	129	22978	7%	119	22988	10%	21	23086	2%

Conclusions

Clear separation of maser and nonmaser distributions Should be able to double or triple the detection rate Still fine tuning the DA Future work will expand the parameter space into other wavelengths

Thank You!

Questions?

Attempt to fill the gaps

Co-Investigator on optical spectroscopy proposals for 75 masers

ESO New Technology Telescope (NTT) La Silla, Chile Southern Astrophysical Research (SOAR) Telescope Cerro Pachón, Chile

Good match

Bad match

 f_{λ} (10 ' erg/s/cm²/Ang)

SDSS Only

