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Abstract: Current cosmological models for the fate of the universe and its geometry lack constraints that can be found with observations of powerful laser-like microwave emission (maser) from galaxy centers. These so called
megamasers are however very rare, with detections in only about 3% of all surveyed galaxies. We explore here ways of efficiently detecting megamasers via a possible connection between this type of emission and accreting

matter on supermassive black holes at galaxy centers, known as Active Galactic Nuclei (AGNs). An important feature of AGNSs is light variability, which can now be exploited with multi-epoch observations in mid-infrared from the
Wide-field Infrared Survey Explorer (WISE). We present here results from our calculations and parameterization of the Structure Function for galaxies with and without maser emission, as a tool to identify and compare the most

prominent variability features, and therefore AGN emission, associated with maser activity.
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