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distance measurements
(standard candles)
> Better understand dark energy

. Measure masses of SMBHSs via simple
(but not easy!) Keplerian fits (inset)

Line-of-Sight Velocity (km s°7)

* Further, to most conservatively measure
variability, we compared calculations of r to
r solely based off NEOWISE data and only
use galaxies with both r = 0.85 (red line),
shown highlighted in blue in the diagram.

 We built and implemented this code to analyze WISE data. In
quantifying variability this way, we have considered galaxies with
r = 0.85 to be ”variable” (highlighted by the vertical red line in
the histograms displaying distributions of r).
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Best-fitted warped disk model superposed on actual maser
positions as measured by the VLBA for NGC 4258. Filled square
marks disk’s center. Filled triangles show the positions of the
high-velocity masers. The linear relationship between systemic
maser impact parameter and LOS velocity (inset) demonstrates
that the disk is very thin and that these masers are confined to
a narrow annulus in the disk (Herrstein et al. 1999).
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