Abstract

Within the compact central region of ~¥3% of galaxies, there is evidence for luminous light emission at 22 GHz
originating in Microwaves Amplified by Stimulated Emission of Radiation (masers) from water molecules. More than
60% of these detections reveal intensities that are millions of times greater than that of the very first masers
discovered in the star-forming spiral arms of our own Milky Way galaxy, and are therefore called megamasers. A
fraction of these megamasers are found in a disk-like configuration, offering thus unprecedented tools for

accurate measurements of: (1) direct distances to their host galaxies, independent of assumptions about the
geometry of the universe, as well as (2) the masses of the central black hole masses that lurk in the centers of these
systems, which are usually millions to billions of times heavier than our own Sun. Unfortunately, there are only a
handful of these megamaser disks that we have been able to investigate in great detail. In an attempt to significantly
increase the detection rate of these holy grails of astronomy, we are conducting a study of the physical properties of
their host galaxies, with the hope of identifying galaxy traits connected to the megamaser disk phenomenon. In this
work, we present our techniques for public data collection of the total flux emitted across the electromagnetic
spectrum (i.e., building spectral energy distributions; SEDs) of the host galaxies of all known megamaser disks, with
the goal of quantifying the degree to which various energetic components (e.g., black hole accretion, star formation,
dust obscuration and reprocessing) contribute to the total galaxy light. Through SED comparisons of host galaxies
that do not host maser emission, along with SED fits of template models from various main emission mechanisms,
our SED plots will be used to best diagnose the relations between the 22 GHz emission and that from nuclear
accretion, stellar light, or the reprocessing by surrounding dust. This method will allow more efficient identification
of the types of galaxies that are most likely to host megamaser disks in order to increase their detection rate.
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Physics of Masers
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Spectral Energy Distributions (SED)

SED plots show the energy (vF,) emitted as a function of

frequency(v)

» Fitting multi-frequency observations, i.e. SEDs, attempt to identity the
degree to which various energetic components contribute to the total flux of
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Four panels exemplifying the dependence of the IR to X-ray SED shape on the
varying nuclear obscuration and luminosity of the AGN, as well as the host
galaxy stellar light contribution (from Hickox & Alexander 2018).

Components and their emission

»  Accretion disk produces X-ray emission
»  Gas heated by hot photons from the accretion disk (power law +

emission lines)

»  Stellar emission from host galaxies peaks in near-IR + contributions

from X-ray binaries in soft X-ray
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emits in radio

Importance of SEDs

Hot dust within the torus emits in the mid-IR range
Dust heated in star formation regions of host galaxy emits in far-IR
Synchrotron emission, related to the accretion disk and/or radio jets,

While the connection between water megamasers and AGNs is not yet well
understood, SEDs provide the tools to better understand the relative
dominance of the light produced in the host galaxies of maser disks. In
particular, by quantifying the light distribution over a large wavelength
range, we should be able to address the following questions:
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Are megamaser disks always associated with black hole accretion?
What mechanisms of the nucleus influence this maser activity?
Does maser activity require the torus?

What is an accurate megamaser disk detection rate?

The Megamaser Disk Sample:

The Megamaser Cosmology PrOjeCt (MCP) » NED is a multiwavelength database of for extragalactic objects

MCP provides the largest catalog of galaxies surveyed for
water maser emission in 22 GHz with the primary goal of
measuring the Hubble constant (H,) by determining
geometric distances to H,0 megamaser disks well within
the Hubble flow, greater than 50 Mpc (Braatz, J., 2009)

» 47 megamaser disks candidates to date; 15 confirmed
(with Very Large Baseline Interferometry (VLBI)
measurements of rotational velocity as a function of
impact parameter that fit a Keplerian disk)

» Most updated list of megamaser disks, along with
investigation of their optical and mid-IR properties,
extracted from Kuo, Constantin, et. al (2018)

Optical

» Combines data from large sky surveys and research publications
» Extracted the frequency (Hz), flux (Jy), uncertainty for the flux measurement, and the
aperture sizes used for each observation

GALEX

SED Data: NASA Extragalactic Database (NED)
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Future Work

»  Collect and include mid-IR photometry from Wide-field Infrared Survey Explorer (Wright et al.
2010) to the SED plots in order to investigate the link between maser activity and the reprocessing

accretion activity for this radio quiet
system.

of the nuclear AGN radiation by the surrounding dust (e.g., Stern et al. 2012)

»  Proceed with SED fitting to quantify the contribution of AGN compared to stellar light and other

energetic phenomena in these galaxies
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